Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Viruses ; 14(12)2022 12 12.
Article in English | MEDLINE | ID: covidwho-2155319

ABSTRACT

The ongoing evolution of severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) has resulted in the recent emergence of a highly divergent variant of concern (VOC) defined as Omicron or B.1.1.529. This VOC is of particular concern because it has the potential to evade most therapeutic antibodies and has undergone a sustained genetic evolution, resulting in the emergence of five distinct sub-lineages. However, the evolutionary dynamics of the initially identified Omicron BA.1 and BA.2 sub-lineages remain poorly understood. Herein, we combined Bayesian phylogenetic analysis, mutational profiling, and selection pressure analysis to track the virus's genetic changes that drive the early evolutionary dynamics of the Omicron. Based on the Omicron dataset chosen for the improved temporal signals and sampled globally between November 2021 and January 2022, the most recent common ancestor (tMRCA) and substitution rates for BA.1 were estimated to be that of 18 September 2021 (95% highest posterior density (HPD), 4 August-22 October 2021) and 1.435 × 10-3 (95% HPD = 1.021 × 10-3 - 1.869 × 10-3) substitution/site/year, respectively, whereas 3 November 2021 (95% highest posterior density (HPD) 26 September-28 November 2021) and 1.074 × 10-3 (95% HPD = 6.444 × 10-4 - 1.586 × 10-3) substitution/site/year were estimated for the BA.2 sub-lineage. The findings of this study suggest that the Omicron BA.1 and BA.2 sub-lineages originated independently and evolved over time. Furthermore, we identified multiple sites in the spike protein undergoing continued diversifying selection that may alter the neutralization profile of BA.1. This study sheds light on the ongoing global genomic surveillance and Bayesian molecular dating analyses to better understand the evolutionary dynamics of the virus and, as a result, mitigate the impact of emerging variants on public health.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Bayes Theorem , Mutation , Phylogeny , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus
2.
Viruses ; 14(5)2022 05 09.
Article in English | MEDLINE | ID: covidwho-1875802

ABSTRACT

SARS-CoV-2 is constantly evolving with lineages emerging and others eclipsing. Some lineages have an important epidemiological impact and are known as variants of interest (VOIs), variants under monitoring (VUMs) or variants of concern (VOCs). Lineage A.27 was first defined as a VUM since it holds mutations of concern. Here, we report additional lineage A.27 data and sequences from five African countries and describe the molecular characteristics, and the genetic history of this lineage worldwide. Based on the new sequences investigated, the most recent ancestor (tMRCA) of lineage A.27 was estimated to be from April 2020 from Niger. It then spread to Europe and other parts of the world with a peak observed between February and April 2021. The detection rate of A.27 then decreased with only a few cases reported during summer 2021. The phylogenetic analysis revealed many sub-lineages. Among them, one was defined by the substitution Q677H in the spike (S) gene, one was defined by the substitution D358N in the nucleoprotein (N) gene and one was defined by the substitution A2143V in the ORF1b gene. This work highlights the importance of molecular characterization and the timely submission of sequences to correctly describe the circulation of particular strains in order to be proactive in monitoring the pandemic.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/epidemiology , COVID-19/virology , Coronavirus Nucleocapsid Proteins/genetics , Humans , Pandemics , Phosphoproteins/genetics , Phylogeny , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics
3.
7th International Conference on Computer and Communications, ICCC 2021 ; : 1783-1789, 2021.
Article in English | Scopus | ID: covidwho-1730922

ABSTRACT

At the end of 2019, a novel coronavirus SARS-CoV-2 was first identified in Wuhan, Hubei Province, China. So far, the virus has spread globally. The rapid transmission and mutation have undoubtedly increased the difficulty of exploring the source of SARS-CoV-2, and it has made the origins study meaningful. This study uses 40,280 SARS-CoV-2 genetic sequences from the world for phylogenetic analysis. It is inferred that the time to Most Recent Common Ancestor (tMRCA) of global SARS-CoV-2 is roughly in early December 2019. Similarly, the tMRCA of SARS-CoV-2 in each continent is estimated, and sort out the timeline of the virus's entry into human society. Also, it is found that some regions outside Asia have COVID-19 cases in December 2019. © 2021 IEEE.

4.
Front Microbiol ; 12: 673855, 2021.
Article in English | MEDLINE | ID: covidwho-1259352

ABSTRACT

Even though the COVID-19 epidemic in China has been successfully put under control within a few months, it is still very important to infer the origin time and genetic diversity from the perspective of the whole genome sequence of its agent, SARS-CoV-2. Yet, the sequence of the entire virus genome from China in the current public database is very unevenly distributed with reference to time and place of collection. In particular, only one sequence was obtained in Henan province, adjacent to China's worst-case province, Hubei Province. Herein, we used high-throughput sequencing techniques to get 19 whole-genome sequences of SARS-CoV-2 from 18 severe patients admitted to the First Affiliated Hospital of Zhengzhou University, a provincial designated hospital for the treatment of severe COVID-19 cases in Henan province. The demographic, baseline, and clinical characteristics of these patients were described. To investigate the molecular epidemiology of SARS-CoV-2 of the current COVID-19 outbreak in China, 729 genome sequences (including 19 sequences from this study) sampled from Mainland China were analyzed with state-of-the-art comprehensive methods, including likelihood-mapping, split network, ML phylogenetic, and Bayesian time-scaled phylogenetic analyses. We estimated that the evolutionary rate and the time to the most recent common ancestor (TMRCA) of SARS-CoV-2 from Mainland China were 9.25 × 10-4 substitutions per site per year (95% BCI: 6.75 × 10-4 to 1.28 × 10-3) and October 1, 2019 (95% BCI: August 22, 2019 to November 6, 2019), respectively. Our results contribute to studying the molecular epidemiology and genetic diversity of SARS-CoV-2 over time in Mainland China.

5.
J Med Virol ; 92(4): 448-454, 2020 04.
Article in English | MEDLINE | ID: covidwho-1217360

ABSTRACT

To investigate the genetic diversity, time origin, and evolutionary history of the 2019-nCoV outbreak in China and Thailand, a total of 12 genome sequences of the virus with known sampling date (24 December 2019 and 13 January 2020) and geographic location (primarily Wuhan city, Hubei Province, China, but also Bangkok, Thailand) were analyzed. Phylogenetic and likelihood-mapping analyses of these genome sequences were performed. On the basis of our results, the star-like signal and topology of 2019-nCoV may be indicative of potentially large "first generation" human-to-human virus transmission. We estimated that 2019-nCoV likely originated in Wuhan on 9 November 2019 (95% credible interval: 25 September 2019 and 19 December 2019), and that Wuhan is the major hub for the spread of the 2019-nCoV outbreak in China and elsewhere. Our results could be useful for designing effective prevention strategies for 2019-nCoV in China and beyond.


Subject(s)
Chiroptera , Coronavirus , Pneumonia , Animals , Betacoronavirus , China , Disease Outbreaks , Humans , Phylogeny , SARS-CoV-2 , Thailand
6.
Virus Res ; 287: 198098, 2020 10 02.
Article in English | MEDLINE | ID: covidwho-653575

ABSTRACT

To investigate the evolutionary and epidemiological dynamics of the current COVID-19 outbreak, a total of 112 genomes of SARS-CoV-2 strains sampled from China and 12 other countries with sampling dates between 24 December 2019 and 9 February 2020 were analyzed. We performed phylogenetic, split network, likelihood-mapping, model comparison, and phylodynamic analyses of the genomes. Based on Bayesian time-scaled phylogenetic analysis with the best-fitting combination models, we estimated the time to the most recent common ancestor (TMRCA) and evolutionary rate of SARS-CoV-2 to be 12 November 2019 (95 % BCI: 11 October 2019 and 09 December 2019) and 9.90 × 10-4 substitutions per site per year (95 % BCI: 6.29 × 10-4-1.35 × 10-3), respectively. Notably, the very low Re estimates of SARS-CoV-2 during the recent sampling period may be the result of the successful control of the pandemic in China due to extreme societal lockdown efforts. Our results emphasize the importance of using phylodynamic analyses to provide insights into the roles of various interventions to limit the spread of SARS-CoV-2 in China and beyond.


Subject(s)
Betacoronavirus/classification , Betacoronavirus/genetics , Coronavirus Infections/epidemiology , Coronavirus Infections/virology , Genome, Viral , Genomics , Phylogeny , Pneumonia, Viral/epidemiology , Pneumonia, Viral/virology , COVID-19 , China/epidemiology , Disease Outbreaks , Evolution, Molecular , Genomics/methods , Humans , Pandemics , SARS-CoV-2
7.
J Med Virol ; 92(6): 602-611, 2020 06.
Article in English | MEDLINE | ID: covidwho-153847

ABSTRACT

To investigate the evolutionary history of the recent outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in China, a total of 70 genomes of virus strains from China and elsewhere with sampling dates between 24 December 2019 and 3 February 2020 were analyzed. To explore the potential intermediate animal host of the SARS-CoV-2 virus, we reanalyzed virome data sets from pangolins and representative SARS-related coronaviruses isolates from bats, with particular attention paid to the spike glycoprotein gene. We performed phylogenetic, split network, transmission network, likelihood-mapping, and comparative analyses of the genomes. Based on Bayesian time-scaled phylogenetic analysis using the tip-dating method, we estimated the time to the most recent common ancestor and evolutionary rate of SARS-CoV-2, which ranged from 22 to 24 November 2019 and 1.19 to 1.31 × 10-3 substitutions per site per year, respectively. Our results also revealed that the BetaCoV/bat/Yunnan/RaTG13/2013 virus was more similar to the SARS-CoV-2 virus than the coronavirus obtained from the two pangolin samples (SRR10168377 and SRR10168378). We also identified a unique peptide (PRRA) insertion in the human SARS-CoV-2 virus, which may be involved in the proteolytic cleavage of the spike protein by cellular proteases, and thus could impact host range and transmissibility. Interestingly, the coronavirus carried by pangolins did not have the RRAR motif. Therefore, we concluded that the human SARS-CoV-2 virus, which is responsible for the recent outbreak of COVID-19, did not come directly from pangolins.


Subject(s)
Betacoronavirus/genetics , Coronavirus Infections/epidemiology , Coronavirus Infections/transmission , Genome, Viral , Pandemics , Pneumonia, Viral/epidemiology , Pneumonia, Viral/transmission , Spike Glycoprotein, Coronavirus/genetics , Amino Acid Sequence , Animals , Betacoronavirus/classification , Betacoronavirus/pathogenicity , COVID-19 , Chiroptera/virology , Coronavirus Infections/virology , Eutheria/virology , Evolution, Molecular , Host Specificity , Humans , Phylogeny , Pneumonia, Viral/virology , SARS-CoV-2 , Sequence Alignment , Sequence Homology, Amino Acid , Spike Glycoprotein, Coronavirus/classification , Spike Glycoprotein, Coronavirus/metabolism
8.
J Med Virol ; 92(5): 501-511, 2020 05.
Article in English | MEDLINE | ID: covidwho-10501

ABSTRACT

To investigate the time origin, genetic diversity, and transmission dynamics of the recent 2019-nCoV outbreak in China and beyond, a total of 32 genomes of virus strains sampled from China, Thailand, and the USA with sampling dates between 24 December 2019 and 23 January 2020 were analyzed. Phylogenetic, transmission network, and likelihood-mapping analyses of the genome sequences were performed. On the basis of the likelihood-mapping analysis, the increasing tree-like signals (from 0% to 8.2%, 18.2%, and 25.4%) over time may be indicative of increasing genetic diversity of 2019-nCoV in human hosts. We identified three phylogenetic clusters using the Bayesian inference framework and three transmission clusters using transmission network analysis, with only one cluster identified by both methods using the above genome sequences of 2019-nCoV strains. The estimated mean evolutionary rate for 2019-nCoV ranged from 1.7926 × 10-3 to 1.8266 × 10-3 substitutions per site per year. On the basis of our study, undertaking epidemiological investigations and genomic data surveillance could positively impact public health in terms of guiding prevention efforts to reduce 2019-nCOV transmission in real-time.


Subject(s)
Betacoronavirus/genetics , Coronavirus Infections/transmission , Coronavirus Infections/virology , Genome, Viral , Pneumonia, Viral/transmission , Bayes Theorem , COVID-19 , China , Coronavirus Infections/epidemiology , Disease Outbreaks , Humans , Likelihood Functions , Models, Genetic , Mutation Rate , Phylogeny , Pneumonia, Viral/epidemiology , SARS-CoV-2 , Thailand , United States
SELECTION OF CITATIONS
SEARCH DETAIL